

DATE: April 9, 2003

TO: Distribution

FROM: AS&T/Information Data Management

SUBJECT: DCN 001 to WDISC PTP Scheduling Server Design Guide

Attached is DCN 001 to the WDISC PTP Scheduling Server Design Guide document. This
DCN is a result of system enhancements pertaining to automated scheduling of the WDISC
system. Discard the current WDISC PTP Scheduling Server Design Guide document and
replace with the attached.

Consolidated Space Operations Contract

CSOC-GSFC-DSP-002093
Original

(Supersedes 451-WDISC-PSSDG99)

WSC Transmission Control Protocol

(TCP)/Internet Protocol (IP) Data
Interface Service Capability (WDISC)

PTP Scheduling Server Design Guide

August 30, 2001

Effective: August 30, 2001

Contract NAS9-98100

Consolidated Space Operations Contract

CSOC-GSFC-DSP-002093
Original

c1877(new version)

Consolidated Space Operations Contract

WSC Transmission Control Protocol (TCP)/Internet
 Protocol (IP) Data Interface Service Capability
 (WDISC) PTP Scheduling Server Design Guide

August 30, 2001

Effective: August 30, 2001

Contract NAS9-98100

This document supersedes WSC Transmission Control Protocol (TCP)/Internet
Protocol (IP) Data Interface Service Capability (WDISC) PTP Scheduling Server
Design Guide, 451-WDISC-PSSDG99, March 30, 1999. Dispose of superseded
documents in accordance with CSOC-CEN-SOP-000205.

CSOC-GSFC-DSP-002093
DCN 001

c1877 iii

Change Information Page

List of Effective Pages

Page Number Version Nature of Change

Cover Original

Signature Page Original

Change Information Page DCN 001 See Cover Memo

DCN Control Sheet Original

Preface DCN 001 See Cover Memo

vi Original

1-1 and 1-2 DCN 001 See Cover Memo

2-1 and 2-2 Original

2-3 and 2-4 DCN 001 See Cover Memo

2-5 Original

2-6 DCN 001 See Cover Memo

2-7 and 2-8 Original

2-9 through 2-11 DCN 001 See Cover Memo

2-12 and 2-14 Original

2-15 DCN 001 See Cover Memo

2-16 Original

A-1 DCN 001 See Cover Memo

B-1 Original

C-1 DCN 001 See Cover Memo

C-2 Original

Document History

Document Number Version -
Change Issue Date Effective Date

451-WDISC-PSSDG99 Original
(Retired 8/01)

March 1999

CSOC-GSFC-DSP-002093 Original August 30, 2001

 DCN 001 April 9, 2003 April 9, 2003

CSOC-GSFC-DSP-002093
Original

c1877 iv

DCN Control Sheet

DCN Number

Date/Time
Group

(Electronic
DCN Only)

Month/Year Section(s)
Affected

Initials

001 Printed 04/03 Cip, preface, 1,
2, Appendix A,
Appendix C

SL

CSOC-GSFC-DSP-002093
DCN 001

c1877 v

Preface

This document, the PTP Scheduling Server Design Guide of the White Sands Complex
(WSC) Transmission Control Protocol (TCP)/Internet Protocol (IP) Data Interface
Service Capability (WDISC), contains general and detailed descriptions of the PTP
Scheduling Server (PSS).
This document was originally created under National Aeronautical and Space
Administration (NASA) control. The WDISC system has been converted to
Consolidated Space Operations Contract (CSOC) control and thus this document has
been converted to CSOC control. This document was originally published in March
1999. Upon conversion, the document has retained most of its original content with the
exception of an update to the list of WDISC customers and reference document list,
both of which are in Section 1. Some of the document was updated in DCN 001 to
reflect NCCDS automated scheduling.
This document is under configuration management of the Goddard Space Flight Center
(GSFC) Network Control Center Miscellaneous Systems (NCCMS) Sustaining
Engineering Review Board (SERB).
Proposed changes to this document must be submitted to the SERB along with
supportive material justifying the proposed change.
Changes to this document will be made by Documentation Change Notice (DCN) or
complete revision.
Comments or questions concerning this document and proposed changes shall be
addressed to WDISC Sustaining Engineering:
 John.Groom@csoconline.com

CSOC-GSFC-DSP-002093
DCN 001

c1877 vi

Contents

Section 1. Introduction ..1-1

1.1 Background ..1-1
1.2 Purpose...1-1
1.3 Scope ..1-1
1.4 Document Organization..1-1
1.5 References ...1-2

Section 2. PTP Scheduling Server Design ...2-1

2.1 Design Philosophy ..2-1
2.2 Assumptions...2-1
2.3 Language..2-1
2.4 Coding Conventions ..2-1

2.4.1 Files ..2-1
2.4.2 Names ..2-2
2.4.3 Comments..2-2

2.5 Compiler..2-2
2.6 Design Overview ...2-3
2.7 Design Specifics..2-4
2.8 Implementation Details ...2-5

2.8.1 Definitions ..2-6
2.8.2 Main Routine ...2-6
2.8.3 Database Class...2-8
2.8.4 Event Class..2-9
2.8.5 Header Class...2-9
2.8.6 Logfile Class ..2-9
2.8.7 PTPServer Class ..2-10
2.8.8 SchedEvent Class ..2-10
2.8.9 SchedSocket Class ..2-10
2.8.10 SortedList Class..2-12
2.8.11 Time Class ...2-12
2.8.12 Timer Class..2-12

2.9 Known Bugs ...2-15
2.10 Missing Features ...2-15

Appendix A. Abbreviations and Acronyms... A-1

Appendix B. Windows NT Service Setup...B-1

Appendix C. PTP Scheduling Client Operation ...C-1

CSOC-GSFC-DSP-002093
DCN 001

c1877 vii

List of Figures

Figure 2-1. PSS Class Interactions ...2-5
Figure 2-2. Main Routine Flow Diagram...2-8
Figure 2-3. Scheduling Socket Flow Diagram...2-11
Figure 2-4. Timer Flow Diagram..2-13
Figure 2-5. Detailed Event Timing ...2-15
Figure 2-6. Scheduling (Delay Calculation) Flow Diagram..2-16

List of Tables

Table 2-1. Naming Conventions ..2-2
Table 2-2. Definitions ...2-7

CSOC-GSFC-DSP-002093
DCN 001

c1877 1-1

Section 1. Introduction

1.1 Background

The White Sands Complex (WSC) Transmission Control Protocol/Internet Protocol
(TCP/IP) Data Interface Service Capability (WDISC) supports customers who require
TCP/IP access to the WSC for telemetry and command processing. Support is
provided from the National Aeronautics and Space Administration (NASA) Integrated
Services Network (NISN) Closed IP Operational Network (IONET), using a defined set
of authorized addresses. The initial customer set included New Millennium Program
Earth Orbiter-1 (NMP/EO-1), Far Ultraviolet Spectroscopy Explorer (FUSE), and Gravity
Probe B Relativity (GP-B).
WDISC has supported or will support the following customers:

a. Far Ultraviolet Spectroscopy Explorer (FUSE).
b. Galaxy Evolution Explorer (GALEX).
c. Gravity Probe B (GP-B).
d. Landsat-7.
e. Long Duration Balloon (LDB).
f. New Millennium Program Earth Orbiter-1 (NMP/EO-1).
g. Thermosphere Ionosphere Mesosphere Energetic Dynamics (TIMED).
h. Ultra Long Duration Balloon (ULDB).

1.2 Purpose
This document should serve to adequately describe the design of the WDISC PTP
Scheduling Server (PSS) software to anyone who might need to maintain or enhance
the source code. Furthermore, any questions that may arise about the day-to-day
operation of the PSS are probably answered here.

1.3 Scope
An understanding of the basic operations of the WDISC is assumed by this document. It
does not attempt to explain basic WDISC concepts. Refer to paragraph 1.5 for
background reading. The PSS design described by this document is as written, (i.e. it is
the final version of the design that is actually implemented by the PSS software).
Indeed, this document was written some 2 months after the coding was completed.
Code revisions through PSS Version 1.2 are incorporated herein.

1.4 Document Organization
This document is divided into two sections and three appendices, as follows:

a. Section 1 contains an introduction to this document.
b. Section 2 contains both general and detailed PSS design information.

CSOC-GSFC-DSP-002093
DCN 001

c1877 1-2

c. Appendix A contains a list of the abbreviations and acronyms used throughout
this document.

d. Appendix B contains instructions for making the PSS a Windows NT service.

1.5 References
a. WSC Transmission Control Protocol (TCP)/Internet Protocol (IP) Data Interface

Service Capability (WDISC) System Requirements, CSOC-GSFC-RD-002090.
b. WSC Transmission Control Protocol (TCP)/Internet Protocol (IP) Data Interface

Service Capability (WDISC) Service Specification, CSOC-GSFC-RD-002056.
c. WSC Transmission Control Protocol (TCP)/Internet Protocol (IP) Data Interface

Service Capability (WDISC) Operations Concept, CSOC-GSFC-OC-002091.
d. WSC Transmission Control Protocol (TCP)/Internet Protocol (IP) Data Interface

Service Capability (WDISC) User's Guide, CSOC-GSFC-UG-002092.
e. PTP NT Programmable Telemetry Processor for Windows NT, User's Manual,

Version 1.40, November 1998.
f. AVTEC PTP for Windows, Programmable Telemetry Processor User’s Guide,

Version 1.49, July, 19, 2001.
g. Interface Agreement between the Network Control Center Data System

(NCCDS) and the WSC TCP/IP Data Interface Service Capability (WDISC),
CSOC-GSFC-AGR-003001, October 16, 2002.

CSOC-GSFC-DSP-002093
Original

c1877 2-1

Section 2. PTP Scheduling Server Design

2.1 Design Philosophy

The overriding design philosophy for this project was Keep It Simple. It should be noted
that this was an external requirement, prompted by a previous implementation of the
PSS (named the 'PTP Timer Server'), which suffered from problems resulting in crashes
and lockups. These problems were thought to be caused by the large number of
threads and/or open sockets it employed. In an effort to minimize potential pitfalls from
the PTP Timer Server design, it was therefore decided that the PSS would be kept
simple. Accordingly, the number of threads and simultaneous socket connections was
kept to a minimum - only 2 threads, and at most 4 sockets 3 in, 1 out).

2.2 Assumptions
The following are operational assumptions that were made which impacted the design
of the PSS software to a greater or lesser extent:

a. Requests for simultaneous or closely overlapping service on different PTP I/O
boards would be rare.

b. Requests for simultaneous ending and (30 seconds later) starting of service on
all three PTP I/O boards would essentially never happen.

c. The starting and ending event times are flexible by a few seconds either way
(i.e., early or late) without serious adverse effects.

d. The 'Forward Service' feature would not be used (and although implemented
anyway, it was not as strenuously tested as the rest of the code). Forward
Service will receive only cursory examination in this document.

e. The only target machines are the Avtec PTP boxes at WSC, running Windows
NT Workstation 4.0, Service Pack 4.

2.3 Language
The PSS is written entirely in C++ language. Calls are made, however, to Avtec
supplied functions in order to access the I/O boards. These functions were probably
written in 'C' (the source code is not available, though).

2.4 Coding Conventions

2.4.1 Files
Each class implementation is typically spread across a header ('.h') and a source ('.cpp')
file. The class definition, along with any other definitions that may need to be public
(e.g., constants, structures, etc.), are in the header file. Small functions (usually get and
put functions) are included in the header file as well (for automatic inlining). Some small
classes are wholly contained in their header file (and thus have no source file). The
source file contains member function implementations, as well as definitions for any
private constants, structures, etc.

CSOC-GSFC-DSP-002093
Original

c1877 2-2

2.4.2 Names

2.4.2.1
All internally defined objects (classes, functions, variables, constants, etc.) should follow
the conventions presented in Table 2-1. External objects will, of course, differ from
these conventions, but should be obvious nonetheless. Note that multiword lower case
and upper case names are separated by underscores; multiword mixed case names are
merely run together.

Table 2-1. Naming Conventions

Convention Example Use

Lower case Leve
next_time

Local variables
Public class members

Lower case with
initial underscore

_Severity_text_status Local constants
Private class members

Mixed case Logfile
CheckRollover

Types
Enumerations
Classes
Functions

Mixed case with
initial underscore

Version
EventWindow

Global constants

Upper case MAX_PTP_SERVERS Preprocessor macros

2.4.2.2
Single letter variable names are used sparingly; they occur in just two roles:

a. The index for a loop, where the index is not used anywhere outside of the loop.
b. The argument of a function, where the argument is a generic instance of the

type to be operated on by the function.

2.4.3 Comments
There is a large comment block at the top of each file (both header and source). It
gives general information about the contents of the file, (e.g., a quick description, list of
classes, change history, etc). Further comments appear occasionally in the code, as
conditions warrant. Only things that are not readily apparent from reading the code are
so commented. This design guide should provide any further clarifications necessary.

2.5 Compiler

2.5.1

The compiler that was used to develop the PSS, and produce the final executable
installed on the PTP machines, is Microsoft Visual C++ version 5.0 (part of Microsoft

CSOC-GSFC-DSP-002093
DCN 001

c1877 2-3

Developer Studio 97). The executable was compiled with debug turned off (i.e. a
'release' version). Any questions about the executable that was produced would
necessitate checking the documentation for this compiler.

2.5.2

The delivered source has the MS VC++ 'workspace files' included, to make loading and
recompiling easier (if MS VC++ is available). These are the PTPSchedServer files with
extensions '.dsp', '.dsw', '.ncb', .opt', and '.plg'.

2.5.3

If recompilation by other means should become necessary, follow these guidelines:
a. Compile all source '.cpp' files to object files.
b. Link these object files with supplied 'av_ptp.lib' library.
c. A windows socket library may be required; the 'ws2_32.lib' library was used for

the installed executable. This is standard on Windows NT 4.0, and can be
added to Windows 95 with a download from Microsoft.

d. The supplied 'av_ptp.dll' file (found in the lib folder, not the source folder), will
need to be copied before running the executable. The copy can be placed in
C:\Winnt\System32 (preferred), C:\Winnt\system, or C:\Winnt.

2.6 Design Overview

2.6.1
There are no explicit WDISC requirements for the PTP Scheduling Server, other than a
few general references to timing and automatic logging. The de facto requirements for
the PSS, however, were set by the previous PTP Timer Server implementation. Thus,
in order to be a drop-in replacement, the PSS duplicates the functionality and I/O
constraints of its predecessor. Other than a very poor set of error messages that can
be returned to the Network Control Center Data System (NCCDS), there is nothing
inherently wrong with these requirements.

2.6.2
The role of the PSS is to act as a local middleman for the NCCDS and the PTP I/O
boards, since scheduling at the NCCDS can occur days in advance of need, and the I/O
boards only operate in real time. The PSS must accept scheduling requests (events)
generated by the NCCDS, transferred via a socket connection. After verifying the
details of the event, a status message (good or bad) must be returned to the NCCDS.
The event information must be kept until the proper time arrives to act upon it. The I/O
board specified must then be started with the correct 'desktop' (control) settings. And at
the proper time later, the I/O board must be shut down again. Throughout all of this,
messages need to be written to a logfile. Old logfiles should be automatically purged to
prevent wasted disk space. The PSS obviously must run continuously, and so should be
robust, autonomous, and sparing in resource consumption. Since there are (at least)
three customers and three I/O boards, the PSS must be able to handle multiple
simultaneous scheduling requests.

CSOC-GSFC-DSP-002093
DCN 001

c1877 2-4

2.6.3
The basic requirements for the PTP Scheduling Server are:

a. Accept incoming schedule requests from NCCDS and report back results.
b. Keep track of all currently scheduled events.
c. Activate/deactivate scheduled events (i.e. control the I/O boards) at appropriate

times.
d. Log all activities to a logfile, with automatic cleanup.

2.6.4
Items 2.6.3a. and c. above are processes that need to operate on a continuous, and
possibly overlapping, basis. Neither should be made to wait on the other. Item 2.6.3b.
is a data structure requirement. Item 2.6.3d is a process that is of lower priority that can
be done at your leisure.

2.6.5
Given the design philosophy, the preliminary design for the PSS thus emerges. To
accommodate items 2.6.3a. and c., two separate threads are needed: a 'socket' request
thread and a schedule 'timer' thread. The data structure for item b. must be accessed
by both threads, and will need to keep the data sorted by time, so a small 'database' is
required. And lastly, logfile routines are needed, again that can be accessed by both
threads.

2.7 Design Specifics

2.7.1
The preliminary design above expanded somewhat during the actual coding of the PSS.
The final design encompasses 10 objects (C++ classes), plus the main routine and
several global constant definitions. The classes are: Database, Event, Header, Logfile,
PTPServer, SchedEvent, SchedSocket, SortedList, Time, and Timer.

2.7.2
The PSS main routine is responsible for setting up the shared class instances (i.e.,
Logfile and Database), as well as starting the 'timer' thread. The main thread then
essentially becomes the 'socket' thread.

2.7.3
When a client makes a connection to the PSS, the request is handled by the socket
thread in SchedSocket. A Header record is read to determine the type of request. If the
type is a schedule or delete request, an Event record is also read. The Database then
processes the request (unless it is a server stop request). SchedSocket then waits for
the next request (or exits).

2.7.4
Events are added to the Database as SchedEvent records, which contain extra
information used by the timer thread. The records are kept in a SortedList, sorted by
their next activation time. The Database tracks the event that is to be activated first
(this is not always the first sorted event!). A separate list of events that have been

CSOC-GSFC-DSP-002093
Original

c1877 2-5

deleted is also maintained. All events that have not yet started are written to a file for
disaster recovery (the file is read as the Database initializes).

2.7.5
The timer thread, in Timer, waits for the next activation time of the event to be activated
first. Where events closely overlap, event start times can be moved up earlier in time,
and stop times can be delayed, to have all I/O boards running on time. When the wait
timer expires, a PTPServer starts/stops the proper I/O board. The wait can also be
canceled early by the Database, if events have been added or removed (or a server
stop has been requested). In this case, the wait time must be recalculated to take into
account the changes.

2.7.6
The Logfile records useful operational information, as well as warnings and error
messages, from all parts of the PSS. Logfiles are maintained automatically. The
interaction of the classes is shown in Figure 2-1. In the figure, an arrow points toward a
class that is used by the class at the other end. Thus, for example, Event is used by
both the SchedSocket and Database classes, and in turn uses the Time class. The
double outlined classes correspond to the two PSS threads.

c1877001.ppt

SchedSocket Timer

Logfile

Time

Event SchedEvent

PTPServer

Database

SortedList

Header

Figure 2-1. PSS Class Interactions

2.8 Implementation Details
The following sections give a detailed description of the inner workings of the PSS.

CSOC-GSFC-DSP-002093
DCN 001

c1877 2-6

2.8.1 Definitions
Files: definitions.h
This is a collection of globally useful constants and template functions. Also, any
constants that may need to be changed in the future (e.g., timing values and directories)
are collected there, for ease of finding them. The values currently defined are given in
Table 2-2.

2.8.2 Main Routine
Files: main.cpp

a. The PSS main routine is responsible for setting up all shared class instances,
as well as starting the timer thread. The main thread then essentially becomes
the socket thread. Figure 2-2 shows a flow diagram for the main routine.

b. The first thing is a test to see if the PSS is already running. If so, execution is
halted, since there can only be one listener on the port for NCCDS socket
connections. This test is accomplished by creating a named system event
object. Only one such object may exist. Any errors return a code, but do not
write anything anywhere.

c. Next, the Logfile instance is created and set up. If there is a problem, again an
error code only is returned. Otherwise, error messages can now be written to
the logfile.

d. The Database instance is then created. Any errors are logged and the server
exits.

e. Next, the timer thread is started. Pointers to the Logfile and Database instances
are passed to the new thread, so both threads can have access to the same
instances.

f. Finally, a SchedSocket instance is created and given control of the main thread.
Since the server is supposed to run indefinitely, control does not normally
return. If control is returned, then a server shutdown has been requested via
the PSC. In this case, everything is destroyed and the server exits.

g. The 'old' thread creation routine, _beginthread(), was used due to the following
caveat found in the MSVC++ documentation:

h. A thread that uses functions from the C run-time libraries should use the
_beginthread and _endthread C run-time functions for thread management
rather than CreateThread and ExitThread. Failure to do so results in small
memory leaks when ExitThread is called.

i. The few references to C library routines (mostly sprintf calls) in the PSS code
could have been eliminated. However, the Avtec supplied library is probably C
code, and may contain C library references. Although the PSS does not exit
any threads (unless the entire server is exiting), it is probably better to be safe
than sorry.

Table 2-2. Definitions

Type Name Value Units Description

Type String Const char* Shorthand for a constant char pointer

constant _Version “1.2” Program versions number

constant _DesktopDirectory “C:Ptp_User\Desktops” Directory where desktop definition files are stored

constant _LogfileDirectory “C:Ptp_User\SchedServer\Logs Directory where program logfiles are stored

constant _DatabaseDirectory “C:Ptp_User\SchedServer\Data Directory where program database files are stored

constant _MinuteSeconds 60 seconds Number of seconds in one minute

constant _HourSeconds 60*_MinuteSeconds seconds Number of seconds in one hour

constant _DaySeconds 24*_HourSeconds seconds Number of seconds in one day

constant _ListenPort 3999 seconds TCP/IP port that server listens on

constant _EventTolerane 15 seconds Minimum time between events on same I/O board

with same desktop

constant _EventWindow 72*_HourSeconds seconds Maximum time in future an event can be scheduled.

constant _LogfileRetention 14*_DaySeconds seconds Age of logfile before automatic deletion

constant _SocketTimeot 60 seconds Maximum time spent reading data on socket

template Min(a,b) a<b?a:b Minimum of two values

template Max(a,b) a>b?a:b Maximum of two values

C
S

O
C

-G
S

F
C

-D
S

P
-002093
O

riginal

c1877.doc
2-7

CSOC-GSFC-DSP-002093
Original

c1877 2-8

c1877002.ppt

Start

PSS Already
Running?

Stop

Destroy All
Created
Objects

Yes

Create
Logfile

InstanceNo

Logfile
Created OK? Yes

Create
Database
Instance

Database
Created OK? No

Stop

YesNo

Run Timer
Create Timer

Instance
Start Timer

Thread

Timer Thread
Created OK?No

Yes

Kill Timer
Thread

Run
SchedSocket

SchedSocket
Created OK?

Create
SchedSocket

Instance
Yes

No

c1877002.ppt

Start

PSS Already
Running?

Stop

Destroy All
Created
Objects

Yes

Create
Logfile

InstanceNo

Logfile
Created OK? Yes

Create
Database
Instance

Database
Created OK? No

Stop

YesNo

Run Timer
Create Timer

Instance
Start Timer

Thread

Timer Thread
Created OK?No

Yes

Kill Timer
Thread

Run
SchedSocket

SchedSocket
Created OK?

Create
SchedSocket

Instance
Yes

No

Figure 2-2. Main Routine Flow Diagram

2.8.3 Database Class

Files: database.h, database.cpp
Instances: 1

a. The database is responsible for handling all communication between the socket
and timer threads. Most of this is legitimate database work, but some is extra
that doesn't really belong here (but had no better place to go).

b. The database defines the class SchedEventList, which is really a typedef for the
SortedList template with the SchedEvent class. Thus we have a sorted list of
SchedEvent pointers; this will form the core of the database. The overloaded
validation function (IsValid) checks for overlapping event times on the same I/O
board. The comparison function compares two events based on their next
activation times.

c. Two SchedEventLists are maintained by the database. The main list
(_schedule) holds all scheduled and active events. The second list (_interrupt)
holds only those active events that have been requested to be deleted, if any.
Deletion cannot take place immediately, because the timer thread has to be
informed so that the I/O boards can be shut down properly.

d. A critical section variable (_crit) is used to prevent concurrent access by the two
threads. The critical section can be requested and released externally, to allow
for complex access to the database.

CSOC-GSFC-DSP-002093
DCN 001

c1877 2-9

e. The database provides a signal handle, which is used by the timer thread when
waiting on events. In this way, the database is able to interrupt the timer thread
during a wait if there are new or deleted events to process.

f. The first active event is actually determined by the Timer, however it is more
properly kept by the database for future reference. For more information on the
first active event, see section 2.8.12 on the Timer class below.

g. The stop flag (_stop) really has nothing to do with the database; it is located
here for convenience only. Otherwise, another inter-thread communication
mechanism would have to have been set up. The flag is set when a shutdown
of the server has been requested by the PSC.

h. All non-active events are written to a file on disk in case of abnormal server
shutdown. The database is preloaded at startup with any events in the file
which are still valid (i.e. not past their start time). As an extra measure of
protection, any existing database file is kept as a backup while writing the new
one; in this way if a failure occurs during the write, something useful may still be
regained. The backup is deleted to indicate a successful write. The read
routine takes this into account, and thus looks first for the backup file, and then
the normal database file.

2.8.4 Event Class
Files: event.h, event.cpp
Instances: many
The Event class is actually the data structure sent from the NCCDS to the PSS with the
scheduling information for an event. Member functions then give access to the internal
data fields and provide rudimentary validity checking.

2.8.5 Header Class
Files: header.h
Instances: many
The Header class is another data structure; this one is used for sending command
information from the NCCDS to PSS, and status information from the PSS back to
NCCDS. Again, member functions give access to the internal data fields, and provide
simple error checking.

2.8.6 Logfile Class
Files: logfile.h, logfile.cpp
Instances: 1

a. The Logfile class is responsible for maintaining a set of logfiles on disk. Either
thread may submit logfile entries without problem; the writing is protected (via
critical section) to prevent interleaved entries. Logfile entries are automatically
time-stamped and typed (i.e. information, warning, or error). The logfiles are
maintained automatically, with rollover to a new logfile each day, and purging of
old logfiles after a set period of time (currently, 14 days).

CSOC-GSFC-DSP-002093
DCN 001

c1877 2-10

b. On startup, the logfile directory is checked for write permission by opening a
test file (testlog.txt). The test file is not deleted. It is therefore perfectly normal
for this empty file to exist in the logfile directory.

c. Submissions can be made to the logfile in several formats: as a plain string, as
a string with an embedded integer (using sprintf %d notation), or as a string with
an embedded string (using %s).

d. Logfiles are only checked for automatic rollover and/or deletion when something
needs to be written. This means that during periods of no server activity (or at
least none worth logging), the open logfile will not rollover, and logfiles older
than 14 days will stick around. Everything will be updated at the next logfile
write.

2.8.7 PTPServer Class
Files: ptp_server.h, ptp_server.cpp
Instances: 1

a. Control of the I/O boards is actually accomplished through a socket connection
to a separate Avtec server; however, an Avtec supplied library encapsulates
and abstracts away from the underlying communication.

b. The PTPServer class serves as an easy interface to the PTP I/O boards, since
many Avtec library commands must be issued for each PSS 'highlevel'
operation (e.g. board startup, start forward service, stop forward service, and
board shutdown). Logging is also provided.

2.8.8 SchedEvent Class
Files: sched_event.h, sched_event.cpp
Instances: many
Base Class: Event

a. The SchedEvent class is the data structure used by the database to store
scheduled event information. It is derived from the Event class, adding
members to track the stage of the event and its PTPServer connection.

b. The event stage indicates which event time is next to be activated: event start,
forward service start, forward service stop, or event stop. Those events in the
event start stage are therefore merely scheduled; all other stages indicate an
active event.

2.8.9 SchedSocket Class
Files: sched_socket.h, sched_socket.cpp
Instances: 1

a. The SchedSocket class handles the duties of the socket request thread. It sets
up a port listener, and waits for incoming socket connections, which indicate a
request from the NCCDS/PSC. When one arrives, a client socket is opened,
and communication established. A single command from the client is
processed, and the client socket is then closed. The connection times out after

CSOC-GSFC-DSP-002093
DCN 001

c1877 2-11

approximately 60 seconds, to prevent server lockups in the case of network
problems. Figure 2-3 shows a flow diagram for the SchedSocket.

START

Wait for Client
Connection

Change Client
Socket to

Non-Blocking

Read A Header
Record

Valid
Header?

Respond With
Bad Command

Message
11

2

Respond with
OK Message

3
Read an Event

Record

Event
Type

Header?

Delete
Type

Header?

Event
Time
Valid?

Respond with
Bad Times

Message

Read an Event
Record

Event
Desktop
Valid?

Send Add
Command to

Database

Send Delete
Command to

Database

Event
Added?

3 Respond with
Bad Desktop

Message
1

No

1

No

Yes

Yes

Yes

No

Event
Deleted?

2
No

Command
Type

Header?
2

Respond with
Delete OK
Message

1

Yes

No

Log
Database

Command?
2

NoOp
Command?

Swap
Logfiles

Command?

Stop
Command?

Send Log
Command to

Database

Send Swap
Command to

Logfile

3 Respond with
OK Message

STOP

No

Yes

No

Yes Yes

No No

Yes

Yes

c1877003.flo

Yes

No

Figure 2-3. Scheduling Socket Flow Diagram

b. Initially, data is read from the socket directly into a header record. The header
can then be queried for its type. Commands are only generated by the PSC;
there is no way of sending them from the NCCDS. The valid commands are: no
operation, stop server, log database, and swap (i.e., rollover) logfiles. The first
command is easily handled internally, the next two are sent to the Database,
and the last is sent to the Logfile.

c. Data for scheduling requests is read into an event record, validated, and then
processed by the database (with extra validation for overlapping events).

d. Delete requests also require reading data into an event record. The information
is then passed to the database for processing.

e. The server responds to the client with a limited vocabulary: OK, invalid
command, desktop file not found, invalid time, forward service file not found,

CSOC-GSFC-DSP-002093
Original

c1877 2-12

and deletion OK. This means that many errors are unfortunately lumped
together under the invalid command and invalid time responses.

2.8.10 SortedList Class
Files: sorted_list.h
Instances: 1
The SortedList class is really a template; it is the basis for SchedEventList, which is
used by the Database class. SortedList provides the functionality for a list of pointers
that is kept in a special, "sorted" order. The method of sorting is up to the class built
from the template. Items can be added to, removed from, or copied from the list in
several ways (e.g., first, last, position, previous, next, etc.).

2.8.11 Time Class
Files: xtra_time.h, xtra_time.cpp
Instances: many
The Time class is a simple, multiformat time representation. A time value can be set or
retrieved in the standard 'time_t' and 'struct tm' formats, as well as retrieved in a
character string format.

2.8.12 Timer Class
Files: timer.h, timer.cpp
Instances: 1

a. The Timer class is responsible for controlling the PTP I/O boards at the
scheduled times. This is simple in concept, until an ever-changing list of
events, overlapping event times, and altered event timing are added to the
picture. Figure 2-4 shows a flow diagram for the Timer.

b. Generally, the timer merely needs to wait until the next activation time of the
first active event. A simple sleep call would suffice for this. But the timer must
also be notified when new events are scheduled, or existing ones deleted, as
this may change the first active event (and thus the wait time). So a
combination timer-signal device is required. Fortunately, signal handles can be
waited on until signaled or until a timer expires. The signal is owned by the
database, since it will be doing the signaling.

c. After wakeup (via either method), the timer checks to see if a shutdown request
has been made, and if so, exits. This is a fast shutdown, and does not change
the state of the PTP I/O boards in any way. It does, however, guarantee that
the timer is not interrupted in the middle of controlling an I/O board, which could
cause problems (with the board, or the controlling DLL).

CSOC-GSFC-DSP-002093
Original

c1877 2-13

START

Calculate New
Delay Time

Wait on Signal
for Delay Time

Sleep for
10 Seconds

1

Release
Exclusive DB

Access

Request
Exclusive DB

Access

Get Event to
Delete

c1877004.flo

Stop Flag
Set by

Database?

Wait Ended
by Signal?

Wait Ended
by Timer

Expiration?

Request
Exclusive DB

Access

1

Any Events
to Delete?

Recheck by
Signal?

3

Event
Active?

Stop PTP I/O
Board

Delete PTP
Server Instance

Get First Active
Event from
Database

Delete Event
from Database

Delete PTP
Server Instance

Delete Event
from Database

Start
Forward
Stage?

2

Start Forward
Service on PTP

I/O Board

Re-Sort the
Database

Set Event to
Next Stage

Stop
Forward
Stage?

Stop Forward
Service on PTP

I/O Board
3

Start Stage?
Create New
PTP Server

Instance

3
PTP I/O
Board

Started OK?

Start PTP I/O
Board

Stop PTP I/O
Board

STOP

1

Yes

No

Yes Yes

NoNo

No

Yes Yes

No

Yes

No

Yes

No

No

Yes

NoYes

Figure 2-4. Timer Flow Diagram

d. The wakeup method is then checked. In either case, the timer requests
exclusive access to the database. If the timer expired, the signal is quickly
rechecked to make sure no new events have just arrived. If there are none, the
first active event is then processed according to the stage it is currently in.

e. If the wakeup is via the signal, the database is checked for deleted active
events. If any are found, the corresponding I/O board is shut down. Then,
exclusive access to the database is released, and the delay is recalculated for
the next wait.

f. In order to understand the mechanics of the scheduling delay calculation, it is
first necessary to understand the details of event timing. First, it should be
noted that although an event specifies activation at a precise point in time, the
processing of that activation is not instantaneous (start requests may take up to
5 seconds, stop requests even longer). Furthermore, waking from a timer
expiration is not necessarily exactly on time, depending on other OS activities.
Therefore, associated with the true event specified activation time (event time)
are two other offset time values: a buffer to hedge for imprecise timer expiration

CSOC-GSFC-DSP-002093
Original

c1877 2-14

(buffer time) and the actual processing time (execution time). These offsets are
constants that are set to reasonable values, based on testing. This gives rise to
two extra time points: the buffered time and the active time. Buffered time is the
event time, adjusted by the buffer time; this is backwards in time for start
requests and forwards for stop requests (i.e. the event should start a little early
and run a little late). Active time is the actual time for action, taking into account
the execution time (for start requests). All of this event timing is depicted in the
upper half of Figure 2 5.

g. Generally speaking, a stop request can be delayed a short while without any
problem. Start requests, however, cannot be delayed. Therefore, if multiple
event start times overlap, something must be done so that all can finish by the
actual event time. This leads to the concept of a multi-start, which is depicted in
the lower half of Figure 2-5. Here, start event are 'stacked' in time by their
execution times, with a single final buffer time. This concept does not apply to
stop events.

h. Figure 2-6 is a flow diagram that shows how the scheduling delay is calculated.
To understand this, the first active event needs some explanation. Although the
database maintains the list of events in order based on their next activation
time, this is not necessarily the order of actual activation, due to altered event
timing, as detailed above. Thus, the event which is truly next to need activation
(the first active event) needs to be determined. This is the true job of delay
calculation; once the first active event is known, the delay is easily determined.

i. In order to find the first active event, the database is scanned in the reverse of
its sorted order. At first this may seem odd, since logically the first active event
should be one of the first few events in the database. While this is true, it is
much easier to build multi-start event timing in order going backwards in time
from the shared event time. Also, it would be more difficult to determine where
stop requests are being pushed beyond a corresponding start request for the
same I/O board. Since the database is never expected to get very large, this
extra overhead (reading the entire database each time) should be minimal.

j. Each event from the database is compared to the current first active event.
Events that can complete execution before the current first active time simply
become the new first active event. Otherwise, the event request type must be
checked. For start requests, a multi-start list is built, since the events overlap
(they have to, due to the sorting of the database and the failure of the first test).
For stop requests, the multi-start list is checked; if it is empty or a corresponding
start event is found, the stop request is the new first active event. Otherwise,
the stop request is ignored (for now). When scanning of the database is
complete, the active time of the first active event is compared to the current
system clock time to determine the scheduling delay.

k. The frequent recalculation (from scratch) of the scheduling delay should limit
the effects of any slippage in time due to execution overruns.

CSOC-GSFC-DSP-002093
DCN 001

c1877 2-15

c1877005. ppt

Start
Execution Time Buffer Time

Active
Time

Buffered
Time

Event
Time

Stop
Execution TimeBuffer Time

Event
Time

Buffered Time
Active Time

Event
Time

Multi-
Start

Execution Time 2Execution Time 1

Active
Time

Buffered
Time

Event
Time

Buffer Time

Figure 2-5. Detailed Event Timing

2.9 Known Bugs
There is one known bug in the PTP Scheduling Server (version 1.2).
The PSS returns an incorrect code to the NCCDS after successfully processing a
'delete event' request. The code returned is 'OK', but should be 'deletion OK'. This
makes no operational difference to the NCCDS, however a possibly misleading entry is
written to the NCCDS logfile.

2.10 Missing Features
Due to time constraints during development, two features (not required) of the PSS
were never implemented:

a. Reading a configuration file for easy changes of the constant values found in
the definitions.h file. This would allow parameter changes without incurring a
code recompile.

b. A ‘graceful’ shutdown request that would wait until nothing is happening on any
of the I/O boards before shutting down the server. Without a change to the
NCCDS <-> PSS interaction, this would only be possible from the PSC, as the
current ‘quick’ shutdown request is.

CSOC-GSFC-DSP-002093
Original

c1877 2-16

START

Delay - Infinite
FAT - Infinite

Request
Exclusive DB

Access

Release
Exclusive DB

Access

Read Last
Event from
Database

Create Empty
Start List

c1877006.flo

Any Events
in

Database?

Start or
Forward

Start Stage?

STOP

Yes

No
1

Get Event
Times & Stage

Calculate
Completion

Time

Completion
Time > FAT?

Start List
Empty?

Get Event from
Start List

Buffered
Time

>=FAT?

FAT .= Execute
Time

FAT =
Buffered Time

Same PTP
I/O Board as

DB Event

Read Previous
Event from
Database

Start List
Empty?

FAT = Active
Time

Clear Start List
Set First Active

Event in
Database

At Beginning
of

Database?
Clear Start List

Add Event to
Start List

Set First Active
Event in
Database

Delay = MAX
(FAT-Current, 0)

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

1

Yes

No

Figure 2-6. Scheduling (Delay Calculation) Flow Diagram

CSOC-GSFC-DSP-002093
DCN 001

c1877 A-1

Appendix A. Abbreviations and Acronyms

Acronym Definition

Avtec Avtec Systems Incorporated

CSOC Consolidated Space Operations Contract

DLL Dynamic Link Library

EO-1 Earth Orbiter-1

FUSE Far Ultraviolet Spectroscopy Explorer

GP-B Gravity Probe-B

GUI Graphical User Interface

I/O Input/Output

IONET IP Operational Network

LDB Long Duration Balloon

MOC Mission Operations Centers

NASA National Aeronautics and Space Administration

NCCDS Network Control Center Data System

NCCMS Network Control Center Miscellaneous Systems

NISN NASA Integrated System Network

NMP New Millennium Program

OS Operating System

PSC PTP Scheduling Client

PSG PTP Scheduling GUI

PSS PTP Scheduling Server

PTP Programmable Telemetry Processors

TCP Transmission Control Protocol

TIMED Thermoshpere Ionosphere Mesosphere Energetic Dynamics

ULDB Ultra Long Duration Balloon

WDISC WSC Data Interface Service Capability

WSC White Sands Complex

CSOC-GSFC-DSP-002093
DCN 001

c1877 B-1

Appendix B. Windows NT Service Setup

B.1

The PSS executable is intended to be used on the PTP machines as a Windows NT
service. Since it was written as a 32-bit console application, however, it is necessary to
use the ServAny utility as an intermediary. ServAny is a proper Windows NT service
executable that is capable of starting another console or windows application as a child
process. The documentation that comes with the ServAny utility is a bit cryptic, so the
following are step-by-step instructions for setting up the PSS executable as a service:

a. Locate the ServAny.exe and SrvInstW.exe utilities on the system. They do not
come standard with Windows NT, but are available from Microsoft as part of the
Windows NT Resource Kit.

b. Open an MS DOS Command Prompt.
c. Use SrvInstW to install ServAny as a service. Run srvinstw.exe. On each page

of the wizard, do the following:
1. Click 'Next' to install a new service.
2. Click 'Next' to install on the local machine.
3. Enter 'PTPSchedServer' in the box and click 'Next'.
4. Enter C:\full\path\to\servany.exe in the box and click 'Next'.
5. Click 'Next' to use the service as its own process.
6. Click 'Next' to use the System Account without desktop interaction.
7. Click 'Next' to use automatic service startup.
8. Click 'Finish' to complete the installation.

d. Run regedit.exe to edit the registry entry for the new PTPSchedServer service
just created:
1. Find the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
PTPSchedServer

2. Edit the DisplayName string value to read 'PTP Scheduling Server'.
3. Under the PTPSchedServer key, create a new key named 'Parameters'.
4. Under the Parameters key, create a new string value named 'Application'.
5. Edit the Application string value and enter the full pathname to the PSS

executable (with extension).
6. Exit the registry editor (changes are saved automatically).

B.2
The new PSS service will be started automatically the next time Windows NT is
restarted. In the mean time, it can be started manually from the 'Services' control panel.
Highlight the PTP Scheduling Server entry in the list, and click the 'Start' button.

CSOC-GSFC-DSP-002093
DCN 001

c1877 C-1

Appendix C. PTP Scheduling Client Operation

C.1

The PTP Scheduling Client (PSC) was developed as a testing tool for the PSS. Before
the 12/16/02 change to NCCDS automated scheduling, the 'official' client used to
schedule PTPs was the PTP Scheduling GUI (PSG); the PSC duplicates the
functionality of the PSG and includes additional features as well. The PSC is, however,
a command line driven program with minimal error checking, and thus is not suitable for
general use. It might be useful for future testing or in emergency situations, though, so
its operation is briefly described here. It is installed on the PTP boxes at WSC.
C.2

The PSC must be run from an MS DOS command prompt. Upon startup, it requests the
IP name or address of the machine where the PSS is running. The default is the local
machine. Next a menu of commands is displayed. Commands are entered as a single
character, followed by pressing 'Enter'. The displayed number/punctuation can be
used, as well as the first letter of the command (e.g., List local PTP event(s) can be
entered as '7' or 'L' or 'l').
C.3 Test connection to server

This command merely sends a NoOp command to the PSS, which should reply with an
OK message. The result is reported on the screen. This is used to test the connection
to the server.
C.4 Copy server event(s) to logfile
This command instructs the PSS to dump its internal database of scheduled and active
events to the logfile. The success of the request is reported on the screen.
C.5 Force server logfile rollover

This command instructs the PSS to close the current logfile, and open the correct logfile
for the current day. This will probably be the same logfile it just closed if there has been
any server activity recently. Data is always appended to the logfile. The success of the
request is reported on the screen.
C.6 Enter a local PTP event

This command allows the user to enter the data for a PTP event. First an event slot
(there are nine total) must be selected. The PSC can keep track of up to nine events.
Then the current time is displayed. Next, the user is asked to enter the server port (for
the I/O board), the desktop filename (full pathname is not needed), the event start time,
and the event stop time. Also, the user is asked if there is forward service; if so, the
forward service start and stop times are requested. Remember, almost no error
checking is done on user input. This was actually intentional, in order to test the PSS.
At any of the prompts a '!' can be entered to abort the data entry. Nothing is sent to the
PSS.

CSOC-GSFC-DSP-002093
Original

c1877 C-2

C.7 Schedule an event with server
This command is used to send a local PTP event to the PSS for scheduling. The event
slot must first be selected. The results of the request are reported on the screen. The
error checking of the server will reject many values accepted by the PSC.
Unfortunately, the list of valid messages from the server is short, and uninformative.
C.8 Delete a scheduled event
This command is used to delete a previously scheduled PTP event from the PSS
database. First, the event information must be entered locally (via '4') in an event slot.
This command then asks for the event slot. The success of the request is reported on
the screen.
C.9 List local PTP event(s)

This command simply lists on the screen the data that has been entered (if any) for
each of the local PTP event slots.
C.10 Wipe clear local PTP event(s)

This command deletes all data that has been entered for each of the local PTP event
slots. Nothing is reported on the screen.
C.11 Kill the server quickly
This command instructs the PSS to shut itself down as quickly as possible. If the PSS
is idle, this will be instantly. If the PSS is busy processing an event start or stop, the
action is completed before shutting down. This is to avoid problems with the I/O boards.
Note that an event can be interrupted between the start and stop; in this case the I/O
board is left running. The success of the request is reported on the screen.
C.12 +: Add 1 min to local PTP event(s)

This command simply adds 1 minute to all of the times that have been entered for each
of the local PTP event slots. This is useful mainly while testing, to send a suite of
events to the server over and over again. Nothing is reported on the screen.
C.13 ?: Help (redisplay this menu)
This command simply redisplays the list of available commands on the screen.
C.14 !: Quit

This command quits the PSC program. Nothing is sent to the PSS.

CSOC-GSFC-
DSP-002093
(Supersedes
451-WDISC-
PSSDG 99)

Original

W
S

C
 Transm

ission C
ontrol P

rotocol (TC
P

)/
Internet P

rotocol (IP
) D

ata Interface S
ervice (W

D
IS

C
)

P
TP

 S
cheduling S

erver D
esign G

uide

